最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘、非线性最小二乘、最小二乘工具的使用、最大似然与最小二 乘的关系以及矩阵的稀疏性等内容。一方面是督促自己对这部分知识进行总结,另一方面也希望能够对其他人有所帮助。由于内容比较多希望能够坚持写完。

       本篇博客主要讲解线性最小二乘问题,主要包括以下内容:

  • 最小二乘问题的定义

  • 正规方程求解

  • 乔姆斯基分解法求解

  • QR分解法求解

  • 奇异值分解法求解

  • 齐次方程的最小二乘

一. 问题的定义

  最小二乘问题通常可以表述为,通过搜集到的一些数据(获取得到的样本),对某一个模型进行拟合,并尽可能的使得模型结果和样本达到某种程度上的最佳拟合:

  转化为数学表达式为:

  其中 x 为模型中参数所组成的向量,e 通常被称为残差向量(residual vector).
  现在假设我们的模型函数为 Ax,样本为 b 且方程数大于未知量数则有:
  转化为最小二乘表达式为:
  该方程通常可以通过正规方程、QR 分解、乔姆斯基分解(Cholesky decomposition)和奇异值分解(SVD)等方法求解。

二. 求解方法

       2.1. 正规方程(Normal Equation)

将展开可以得到:
为了求解得到该方程的最优解(即最小值),我们可以求解其对于参数 x 的偏导数,并令其等于零:
化简后得到:
以上被称为最小二乘的正规方程(Normal Equation)。进一步求解可得到:
该结果亦可表示为矩阵的伪逆形式(伪逆为逆矩阵广义形式,奇异阵或非方阵不存在逆矩阵,但可以求解其伪逆矩阵)

延伸阅读

学习是年轻人改变自己的最好方式-Java培训,做最负责任的教育,学习改变命运,软件学习,再就业,大学生如何就业,帮大学生找到好工作,lphotoshop培训,电脑培训,电脑维修培训,移动软件开发培训,网站设计培训,网站建设培训学习是年轻人改变自己的最好方式