本文的原版Python代码参考了以下文章:
零基础入门深度学习(1) - 感知器
零基础入门深度学习(2) - 线性单元和梯度下降
在机器学习如火如荼的时代,Python大行其道,几乎所有的机器学习的程序都是Python写的。
.Net的机器学习库有,但是非常少,Tensorflow也暂时并不支持.Net.
写这篇文章的目的,也只是想尝试一下,通过将Python的源代码改写成Net来更加深入的理解感知机的原理。
毕竟在改写的时候,每一行代码都必须研究一下,很多知识是无法混过去的。
感知机的模型其实就这么简单,本文也不是深度学习的科普,所以具体不解释。
(题外话 .Net Core 暂时没有System.Math的支持,对于一些简单的机器学习,改写起来没有问题,但是稍微复杂一些就无能为力了。)
一个感知机的代码大概是这个样子的,这里矩阵的实现还是很原始的List
延伸阅读
- ssh框架 2016-09-30
- 阿里移动安全 [无线安全]玩转无线电——不安全的蓝牙锁 2017-07-26
- 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe 2024-03-26
- Selective Search for Object Recognition 论文笔记【图片目标分割】 2017-07-26
- 词向量-LRWE模型-更好地识别反义词同义词 2017-07-26
- 从栈不平衡问题 理解 calling convention 2017-07-26
- php imagemagick 处理 图片剪切、压缩、合并、插入文本、背景色透明 2017-07-26
- Swift实现JSON转Model - HandyJSON使用讲解 2017-07-26
- 阿里移动安全 Android端恶意锁屏勒索应用分析 2017-07-26
- 集合结合数据结构来看看(二) 2017-07-26