这一个月,从对机器学习充满好奇与畏惧,到对各种算法稍有理解以及围绕推荐场景的编码实践,算是对机器学习有了一个入门的体验。但是中间也踩过不少坑,比如啃过线性代数的教材、看过无聊的机器学习课程、追过高端的机器学习书籍、陷入一个算法无法自拔(最后也没整明白)...其实,学习机器学习没有那么难,也很容易走偏。谨以此文,作为ML入门小白的一个小小的参考...

本篇虽不是这一个月的流水账,但是基本按照下面的思路对着一个月做了一次总结:

  • 什么是机器学习?

  • 机器学习都有什么算法?

  • 个人对机器学习的三种境界理解

  • 推荐的学习路线

  • 推荐资源

希望读者有所收获,另外,如果文中有任何理解上的错误,还望指正!

什么是机器学习?

之前在没有具体接触到机器学习前,我大概对他有一个概念上的认识,觉得是一种很高级的算法,能让机器学会很多的事情,就像...《我的机器人女友》里那样!

或者是《机械