1.前言      

       前面提到的算法都是通过一个函数来拟合数据解决问题,也就是单个机器学习算法,与其相对的还有多个机器学习算法,即:集成方法。

       集成方法来源:如果模型之间近似相互独立,则多个模型联合的性能要优于单个模型。大致上可以分成两类:(一)把几种不同的机器学习算法集合到一起(二)把一种算法的不同参数组合起来。

       集成方法由两层算法组成。底层的算法叫基学习器或者弱学习器,是单个机器学习算法,然后这些算法被集成到高层的一个方法中。

       梯度提升算法(Gradient Boosting)属于把一种算法的不同参数组合起来的方式。

2.关于梯度提升算法

        梯度提升算法是由Bagging算法改进而来。

        Bagging算法的基本原理:从数据集中有放回的随机取样,每次抽取一定比例的数据作为训练样本,剩下的数据作为测试样本。重复以上动作n次,然后对每次动作训练一个基学习器,然后把这些学习器组合到一起,成为集合算法。由于n的不确定性,所以并不是所有的基学习器都会参与到最后的集合算法中去,后面会介绍如何进行筛选。

延伸阅读

学习是年轻人改变自己的最好方式-Java培训,做最负责任的教育,学习改变命运,软件学习,再就业,大学生如何就业,帮大学生找到好工作,lphotoshop培训,电脑培训,电脑维修培训,移动软件开发培训,网站设计培训,网站建设培训学习是年轻人改变自己的最好方式