传统的Canny边缘检测算法是一种有效而又相对简单的算法,可以得到很好的结果(可以参考上一篇Canny边缘检测算法的实现)。但是Canny算法本身也有一些缺陷,可以有改进的地方。

1. Canny边缘检测第一步用高斯模糊来去掉噪声,但是同时也会平滑边缘,使得边缘信息减弱,有可能使得在后面的步骤中漏掉一些需要的边缘,特别是弱边缘和孤立的边缘,可能在双阀值和联通计算中被剔除。很自然地可以预见,如果加大高斯模糊的半径,对噪声的平滑力度加大,但也会使得最后得到的边缘图中的边缘明显减少。这里依然用Lena图为例,保持Canny算法中高阀值100,低阀值50不变,高斯半径分别为2,3,5的Canny边缘二值图像如下。可知高斯模糊把很多有用的边缘信息也模糊掉了,因此如何精确的选择高斯半径就相当重要。

iOS培训,Swift培训,苹果开发培训,移动开发培训   iOS培训,Swift培训,苹果开发培训,移动开发培训   iOS培训,Swift培训,苹果开发培训,移动开发培训

                 高斯半径2                                          高斯半径3                                          高斯半径5

2. 在最初的Canny算法中是使用的最小的2x2领域来计算梯度幅值的。这种方法对噪声很敏感,比较容易检测到伪边缘或漏掉真是边缘。