1.再提逻辑回归

   前面已经讲过了逻辑回归,这里不再细讲,只是简单的说一个函数,主要是方便大家更好的理解概率校准。

  在逻辑回归中,用的最多的就是sigmod函数,这个函数的作用就是把无限大或者无限小的数据压缩到[0,1]之间,用来估计概率。图像大致为:

大学生就业培训,高中生培训,在职人员转行培训,企业团训

基本上是以0.5分界,0.5以上为1,0.5以下为0。但是这个分界值可以自己设定。

2.分类函数的原理

       在进行分类时,基本上和逻辑回归的原理一样,计算出某个数据属于各分类的概率,然后取概率最大的那个作为最终的分类标签。

       但是假设我们考虑这样的一种情况:在二分类中,属于类别0的概率为0.500001,属于类别1的概率为0.499999。假若按照0.5作为判别标准,那么毋庸置疑应该划分到类别0里面