近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验写出来,供大家参考。
研读之前已经发现有中文博客做了一些解析,我也受益不少。参见fuxingyin的blog:Kintinuous 解析 。不过有些地方已经不够详细,故此文重新进行解读。可能某些地方会重复。
本文是在自己阅读、整理、代码实践的基础上做的一些结果,希望对相关研究者有所帮助。
Kintinuous涉及的文章,其中包括4篇论文,1篇专利(如下链接来自其开源代码中找到:github repo - Kintinuous):
Real-time Large Scale Dense RGB-D SLAM with Volumetric Fusion, T. Whelan, M. Kaess, H. Johannsson, M.F. Fallon, J. J. Leonard and J.B. McDonald, IJRR '14
Deformation-based Loop Closure for Large Scale Dense RGB-D SLAM, T. Whelan, M. Kaess, J.J. Leonard, and J.B. McDonald, IROS '13
Robust Real-Time Visual Odometry for Dense RGB-D Mapping, T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and J.B. McDonald, ICRA '13
延伸阅读
- ssh框架 2016-09-30
- 阿里移动安全 [无线安全]玩转无线电——不安全的蓝牙锁 2017-07-26
- 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe 2024-03-26
- Selective Search for Object Recognition 论文笔记【图片目标分割】 2017-07-26
- 词向量-LRWE模型-更好地识别反义词同义词 2017-07-26
- 从栈不平衡问题 理解 calling convention 2017-07-26
- php imagemagick 处理 图片剪切、压缩、合并、插入文本、背景色透明 2017-07-26
- Swift实现JSON转Model - HandyJSON使用讲解 2017-07-26
- 阿里移动安全 Android端恶意锁屏勒索应用分析 2017-07-26
- 集合结合数据结构来看看(二) 2017-07-26