本文将指导你如何在自己的Mac上部署Theano + Keras的深度学习开发环境。
如果你的Mac不自带NVIDIA的独立显卡(例如15寸以下或者17年新款的Macbook。具体可以在“关于本机->系统报告->图形卡/显示器”里查看),那么你可能无法在这台Mac上使用GPU训练深度学习模型。不过这并不值得遗憾。事实上,我在自己的Macbook上(15-inch,Early 2013,NVIDIA GeForce GT 650M 1024 MB)做了一个简单的测试:在mnist数据集上训练CNN模型时,GPU模式相对于CPU模式仅节省了1/3的时间。这可能要归咎于Mac上赢弱的显卡。相比之下,我更推荐购买一台有着强劲性能的显卡的PC本(比如某些游戏本)来搭建深度学习的开发环境,或者是直接租赁AWS的Instance服务。
下面步入正题。
安装GPU开发环境
几乎所有的主流深度学习框架在使用GPU进行模型训练时都依赖于两个底层环境:CUDA和cuDNN。前者是一个使用GPU进行并行计算的平台,后者是一个封装了使用GPU加速神经网络计算的library。
安装CUDA
确保你的显卡被CUDA所兼容。前往CUDA-capable GPU检查可用的显卡型号。
接下来,安装xcode(通过App Store)和命令行工具:
延伸阅读
- ssh框架 2016-09-30
- 阿里移动安全 [无线安全]玩转无线电——不安全的蓝牙锁 2017-07-26
- 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe 2024-03-26
- Selective Search for Object Recognition 论文笔记【图片目标分割】 2017-07-26
- 词向量-LRWE模型-更好地识别反义词同义词 2017-07-26
- 从栈不平衡问题 理解 calling convention 2017-07-26
- php imagemagick 处理 图片剪切、压缩、合并、插入文本、背景色透明 2017-07-26
- Swift实现JSON转Model - HandyJSON使用讲解 2017-07-26
- 阿里移动安全 Android端恶意锁屏勒索应用分析 2017-07-26
- 集合结合数据结构来看看(二) 2017-07-26