一些看似简单的数据操作,当作用于海量数据集时,就会出现“意料之外,却在情理之中”的问题,海量数据操作,需要采用特殊方法,才能“曲径通幽”。在删除海量数据时,需要注意日志的增长,索引碎片的增加和数据库的恢复模式,特别是利用大容量日志操作,来减少日志的增长和提高数据插入的速度。对于大数据去重,通过一些小小的改进,比如创建索引,设置忽略重复值选项等,能够提高去重的效率。
一,从海量数据中删除数据
从海量数据表中删除一半数据,看似简单,使用delete命令,如果真这么干,SQL Server产生的事务日志暴增,估计会把服务器硬盘爆掉。数据库的恢复模式会影响日志文件的增长,在删除海量数据时,根据采用的方法,相应地把恢复模式设置为simple,或bulk_logged 模式,能够在很大程度上减少删除操作产生的事务日志,从而避免日志暴增。
另外,在删除数据时,把表上的多余索引删除(注意,是删除多余的索引),只保留一个必需的索引;在数据删除完成之后,再重建索引,能够提高数据删除操作的性能。有人做过实验,从存储1.6亿条记录的大表中删除数据,每删除400万条要消耗1.5 - 3小时,越到后面速度越慢,为什么?这是因为,每次删除数据时,数据库都要相应地更新索引,这是很慢的硬盘 IO操作,并且,越到后面,索引碎片越多,更新索引就越慢,这就是在删除400万条记录时,一开始只消耗1.5小时,后面要消耗3小时原因。
最后,根据保留数据占总数据量的比例,选择不同的方法删除数据。如果大表中保留的数据较少,可以先把保留的数据存储到临时表中,然后,把原始表删除,这样能够利用大容量日志操作,来减少日志的增长和提高数据插入的速度。
1,循环删除,避免日志文件暴增
在从海量数据表中删除大量数据时,为了避免日志文件暴增,通常采用循环删除方法:首先设置恢复模式为simple,然后每次删除操作都只删除部分数据,这样,当单个删除操作执行完成时,事务日志会被及时清理,事务日志一般保持单个删除操作的事务日志量。
循环删除的伪代码如下,该方法仍有一些局限性,耗时过长,并且会长期使数据库处于简单恢复模式下:
--ALTER DATABASE database_name SET RECOVERY SIMPLE ; while @index<@EndIndexbegin delete table_name where index<=@index; set @index+=@Incrementend
2,将数据插入导其他表中,