上一节,我们介绍利用文本和知识库融合训练词向量的方法,如何更好的融合这些结构化知识呢?使得训练得到的词向量更具有泛化能力,能有效识别同义词反义词,又能学习到上下文信息还有不同级别的语义信息。

    基于上述目标,我们尝试基于CBOW模型,将知识库中抽取的知识融合共同训练,提出LRWE模型。模型的结构图如下:

电脑培训,计算机培训,平面设计培训,网页设计培训,美工培训,Web培训,Web前端开发培训

    下面详细介绍该模型的思想和求解方法。

1. LWE模型

    在Word2vec的CBOW模型中,通过上下文的词预测目标词,目标是让目标词在其给定上下文出现的概率最大,所以词向量训练的结果是与其上下文的词相关联的。然而 CBOW模型只考虑了词语的局部上下文信息,无法很好的表达同义词和反义词等信息。例如下面的几个case:

电脑培训,计算机培训,平面设计培训,网页设计培训,美工培训,Web培训,Web前端开发培训

    为了解决上述问题,本文将同义词和反义词等词汇信息以外部知识的形式,作为词向量训练中的监督数据,让训练得到的词向量能学习到同义、反义等词汇信息,从而能更好地区分同义词和反义词。

1.1 模型思想

   记 ???? 的同义词和反义词集合为( ???? , ?????????? , ?????????? ),其中 SYN 表示同义词集合,ANT 表示反义词集合,我们的目标是已知目标词对应的同义词集合和反义词集合,预测目标词,使得目标词和它的同义词距离尽可能相近,与反义词距离尽可能远。 

   例如“The cat sat on the mat.”,已知sat有同义词seated,反义词stand,来预测目标词为sat。

   该模型称为词汇信息模型,模型结构图如下:

电脑培训,计算机培训,平面设计培训,网页设计培训,美工培训,Web培训,Web前端开发培训

   对于一个词语,我们根据它的同义词和反义词预测目标词,最大化词语和它的同义词同时出现的概率, 并降低词语和它反义词同时出现的概率。根据这个目标,定义以下的目标函数: 

电脑培训,计算机培训,平面设计培训,网页设计培训,美工培训,Web培训,Web前端开发培训

电脑培训,计算机培训,平面设计培训,网页设计培训,美工培训,Web培训,Web前端开发培训

    我们目标是在基于上下文的CBOW语言模型训练过程中,加入同义词反义词信息作为监督,使得训练所得词向量能学习到同义和反义知识。基于该想法,我们提出基于词汇信息的词向量模型(Lexical Information Word

网友评论