随着2016年Alpha Go在围棋击败李世石,2017年初卡内基梅隆大学人工智能系统Libratus在长达20天的鏖战中,打败4名世界顶级德州扑克玩家,这标志着人工智能技术又达到了一个新的高峰。人工智能已经不再是在各大公司幕后提供各种智能推荐、语音识别算法的工具,它已经慢慢走向台前进入到平常百姓的视野之中。曾经有人描述人工智能就向一列缓缓开向人们的火车,一开始非常遥远而且看起来非常缓慢,它慢慢接近,直到人们清楚看到它的时候,它已经呼啸而过,把人远远抛在身后。现在似乎就是人们可以远远看到人工智能的时候,它已经发展数十年,但直到最近才引起广泛注意,随着大数据的积累、算法的改进、硬件的提升,人工智能可以在很多细分的领域成为专家,辅助人类甚至超过人类。

作为一名初学者,我也是刚刚接触人工智能和机器学习,希望能够和大家共同学习。接触一个领域的第一步是尽快的了解全貌并且搭建出相应的知识体系。大致提纲如下(后续不断补充):


iOS培训,Swift培训,苹果开发培训,移动开发培训

 

1 - 数学

线性代数、微积分

在整个机器学习过程中涉及大量矩阵运算和微积分导数的概念,因此建议初学者至少要有较为扎实的数学基础,对矩阵和微积分的概念了解比较清楚。否则在一些公式推导过程中会遇到较大障碍,而不断反复回来复习数学知识。

 

2 - 编程语言

Python/R/Java/Matlab  7 Steps to Mastering Machine Learning With Python

Python已经成为机器学习的第一语言,至于为什么知乎中有非常不错的解释。众多机器学习的框架都支持Python API,所以学习机器学习,Python语言语法估计是绕不过去。

 

3 - Supervise learning

Linear regression:机器学习知识体系 - 线性回归

Logistic regression: 

网友评论